Constructing an equilateral triangle

- 1. Start with a line segment
- 2. Measure the line segment by placing the compass on one endpoint and extending it to the other endpoint
- 3. Keeping the compass on the first endpoint, make an arc above the line segment across the halfway point
- 4. Without adjusting the width of the compass, place it on the other endpoint
- 5. Make an arc above the line segment that intersects the first arc
- 6. Using a straightedge, connect each endpoint to the intersection of the arcs to make an equilateral triangle

The measures of 3 angles of a triangle are in the ratio of 3:4:5.

Find the measure of the largest angle.

$$3x + 4x + 5x = 180$$

$$12x = 180$$

$$x = 15$$

If one of the angles of a triangle is 80°, find the measure of the angle formed by the bisectors of the other two angles.

THE MIDPOINT FORMULA

Given two points, $A(x_1, y_1)$ and $B(x_2, y_2)$, the MIDPOINT of \overline{AB} can be found using the formula:

$$M = \left(\frac{X_1 + X_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Find the coordinates of the midpoint of \overline{AB}

If the midpoint of \overline{AB} falls at (7, 9), and point A is located at (-2, 4), then find the coordinates of B

$$M = \begin{pmatrix} x_1 + x_2 \\ 2 \end{pmatrix}, \quad y_1 + y_2 \\ 2 \end{pmatrix}$$

$$(7, 9) = \begin{pmatrix} -2 + x \\ 2 \end{pmatrix}, \quad \frac{4 + y}{2}$$

$$7 = \begin{pmatrix} -2 + x \\ 2 \end{pmatrix}$$

$$7 = \begin{pmatrix} -2 + x \\ 2 \end{pmatrix}$$

$$14 = -2 + x$$

$$10 = x$$

$$18 = 4 + y$$

$$10 = x$$

Midsegment of a Triangle

A segment that connects the midpoints of two sides of a triangle

Triangle Midsegment Theorem

A midsegment of a triangle will always be parallel to the the 3rd side, and half of its length

Median of a Triangle

A segment that connects the vertex of a triangle to the midpoint of the opposite side

Centroid of a Triangle

- point of concurrency for the medians of a triangle
- always in the interior of the triangle
- center of gravity
- length from vertex to centroid is 2/3 the length of the entire median

To construct a centroid, construct the perpendicular bisector of each side of the triangle

** when drawing the bisector, just draw enough of it to intersect the side of the triangle - this indicates its midpoint

