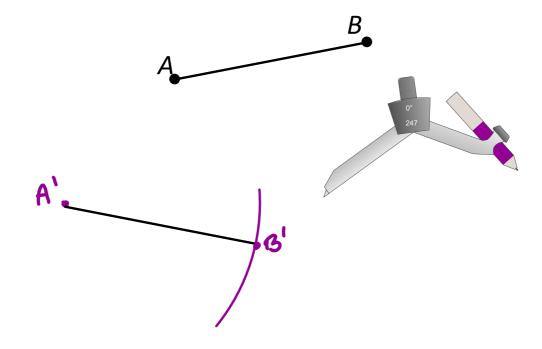
Warm-up

- 1. Complete front of white paper.
- 2. On the back, practice drawing circles (some people are page-turners, some people are compass-twirlers.

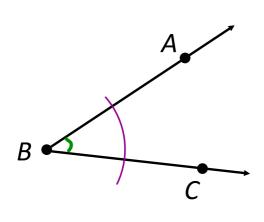
Using constructions to copy a segment

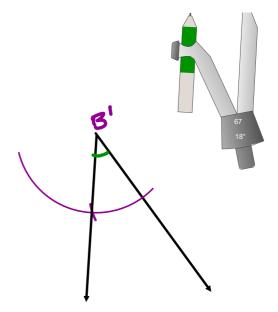
- 1. Mark an endpoint of the new segment
- 2. Set the point of the compass onto one of the endpoints of the initial line segment
- 3. Adjust the compass's width to the other endpoint
- 4. Without changing the compass's width, place its point on the endpoint of the new segment
- 5. Draw an arc
- 6. Mark the other endpoint of the new segment somewhere along the arc
- 7. Connect the points to create the new segment



Using constructions to copy an angle

- 1. Mark the vertex of the new angle
- 2. Draw a ray extending from that vertex
- 3. Place the point of the compass on the vertex of the original angle, and open it to any width along one of the rays
- 4. Draw an arc across both sides of the angle
- 5. Without changing the compass's width, place the point of the compass on the new vertex and draw the same arc
- 6. On the original angle, set the width of the compass to equal the distance between the points of intersection of the angle and the arc
- 7. On the new angle, without changing the compass's width, place the point where the ray and the arc intersect and draw an arc that intersects the existing arc
- 8. Draw a ray from the vertex through this point of intersection





Types of Angles

Straight: measure = 180°

Right: measure = 90° L

Acute: measure between 0° and 90°

Obtuse: measure between 90° and 180°

Find the restrictions on the values of x for an obtuse angle that measures $(7x+33)^{\circ}$

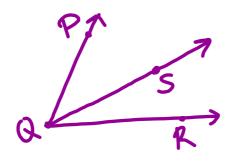
90 < obtuse < 180°

90 <
$$7x + 33 < 180$$
 $-33 < -33$
 $57 < \frac{7x}{7} < \frac{147}{7}$
 $\frac{57}{7} < x < 21$

Interval notation: $(\frac{57}{7}, 21)$

Angle Addition Postulate

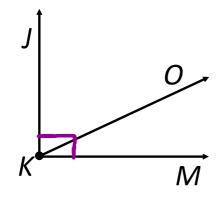
If a point S lies in the interior of $\angle PQR$, then $m \angle PQS + m \angle SQR = m \angle PQR$



Given: $\overrightarrow{KJ} \perp \overrightarrow{KM}$

∠JKO is four times as large as ∠MKO

Find: m∠JKO

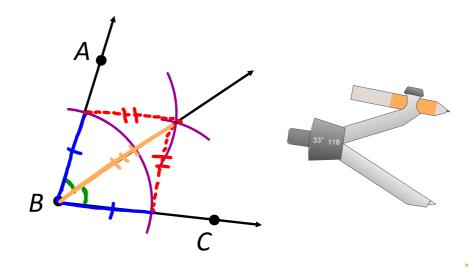


$$mL hko = x$$

 $mL hko = 4x$
 $mL hk$

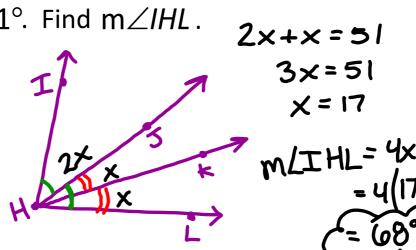
Using constructions to create an angle bisector

- 1. Place the point of the compass on the vertex of the angle
- 2. Draw two small arcs using the same width of the compass one across each leg of the angle
- 3. Place the point of the compass on one of the two intersection points and draw an arc in the interior of the angle
- 4. Repeat for the other leg so that the two arcs cross
- 5. Use a straightedge to draw a segment from the vertex of the angle to the point of intersection of these two interior arcs



 \overrightarrow{HJ} bisects $\angle IHL$, \overrightarrow{HK} bisects $\angle JHL$, and

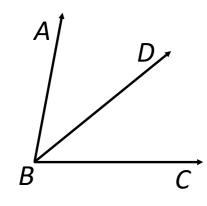
 $m\angle IHK = 51^{\circ}$. Find $m\angle IHL$.



Given:
$$m \angle ABC = 78^{\circ}$$

 $m \angle ABD = (6x+3)^{\circ}$
 $m \angle DBC = (4x-5)^{\circ}$

Find: m∠ABD



$$m \angle ABD + m \angle DBC = m \angle ABC$$

 $(6x+3) + (4x-5) = 78$
 $10x-2 = 78$
 $10x = 80$

COMPLEMENTARY ANGLES are two angles whose sum is 90°

SUPPLEMENTARY ANGLES are two angles whose sum is 180°

Two angles are complementary. The measure of one of these angles is three greater than twice the measure of the other. Find the measure of each.

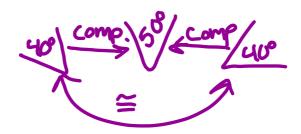
$$x + y = 90$$
 $2y + 3 + y = 90$
 $x = 2y + 3$ $3y + 3 = 90$
 $x = 90 - 29 = 61^{\circ}$ $3y = 87$
 $y = 29^{\circ}$ $y = 29^{\circ}$

Two times the supplement of an angle is 12 less than six times the complement of the angle. Find the measure of the complement.

$$\angle = m$$
 $2(180-m) = 6(90-m) - 12$
 $comp. of m = 90-m$ $360-2m = 540-6m-12$
 $supp. of m = 180-m$ $4m = 168$
 $90-42 = (48°)$ $m = 42°$

Congruent Complements Theorem

If angles are complementary to the same or congruent angles, then they are congruent



If $\angle A$ is complementary to $\angle B$, and $\angle B$ is complementary to $\angle C$, then $.. \angle A \cong \angle C$

Congruent Supplements Theorem

If angles are supplementary to the same or congruent angles, then they are congruent

If $\angle A$ is supplementary to $\angle B$, and $\angle B$ is supplementary to $\angle C$, then ... $\angle A \cong \angle C$