Suppose you stand and look up at a point in the distance. The angle that your line of sight makes with a line drawn horizontally from you is called the ANGLE OF ELEVATION.

The ANGLE OF DEPRESSION is the same type of angle for a person looking back down at you.

You are measuring the height of a building. You stand 100 feet from the base of the building. The angle of elevation from you to the top of the building is 48°. Estimate the height of the building.

$$\angle = 48$$
 $= 48 = \frac{x}{100}$
 $= 100$
 $= 100$
 $= x$
 $= 100 = x$
 $= 100 = x$
 $= 111.061$

.. THE HEIGHT OF THE BUILDING
15 APPROX 111.061 Ft

A wire runs from a point on the ground to the top of a 24-ft flagpole. The angle of elevation of the wire is 50°. How long is the wire?

$$\frac{\sin 50}{1} = \frac{24}{X}$$

$$X = \frac{24}{51050}$$

x≈ 31.330

THE WIRE IS APPROX.

31.330 Ft LONG

A 30-ft ladder is placed against a wall so that the foot of the ladder is 5 ft from the wall. What is the angle of elevation of the ladder?

$$\angle = \Theta$$

$$adj = 5$$

$$hyp = 30$$

$$\Theta = \cos^{-1}(\frac{5}{30})$$

$$\Theta \approx 80.406$$

Lesson 3 - Angles of Elevation and Solving Right Triangles Marked

Will is 61-ft high on an amusement park ride. His angle of depression to the park entrance is 42°, and his angle of depression to his sister Maggie standing below is 80°. How far from the entrance is Maggie standing?

park entrance.

Solving Right Triangles

** FIND EVERYTHING!!

$$AB = 6.359 \ \angle A = 58^{\circ}$$

$$BC = |0.177 \angle B = 90^{\circ}$$

$$AC = 12$$
 $\angle C = 32^{\circ}$

AB
$$\angle = 32$$

$$OPP = 9$$

$$hyp = 12$$

$$\cos 32 = \frac{\times}{12}$$

Lesson 3 - Angles of Elevation and Solving Right Triangles Marked

$$EG = 7$$

$$EG = 7$$
 $\angle F = 66.801^{\circ}$

$$FG = \sqrt{58}$$
 $\angle G = 23.199$

$$EF^{2}+EG^{2}=GF^{2}$$

 $3^{2}+7^{2}=GF^{2}$
 $9+49=GF^{2}$
 $58=GF^{2}$
 $GF=\sqrt{58}$

$$mLG$$
 $L=\Theta$
 $opp=3$
 $adj=7$

$$5.25$$
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25

$$\frac{mLt}{L=0}$$

$$\frac{1}{0}$$

$$tan \theta = \frac{7}{3}$$

 $\theta = tan^{-1}(\frac{7}{3})$
 $\theta \approx 66.801^{\circ}$

$$XY = 8$$
 $\angle X = 90^{\circ}$

$$YZ = 12.446 \angle Z = 40^{\circ}$$

$$XZ \Rightarrow Z = 40^{\circ}$$

$$6pp = 8$$

$$adj = a$$

$$a = \frac{8}{\tan 40}$$

$$YZ \Rightarrow \angle = 40$$

hyp=b
opp=8

$$b = \frac{8}{51040}$$