In the circle provided, draw a chord and then construct its perpendicular bisector:

Theorem:

In any circle, the perpendicular bisector of a chord is the radius of that circle.

Theorem:

If a radius is perpendicular to a chord, then it bisects the chord (and its arc)

Theorem

In the same circle (or in congruent circles):

- 1 Congruent central angles have congruent chords
- 2 Congruent chords have congruent arcs
- 3 Congruent arcs have congruent central angles

Theorem

In the same circle, or in congruent circles, two chords are congruent if and only if they are equidistant from

$$\widehat{\text{m}GH} = 100^{\circ}$$

Chords

$$\widehat{mGI} = 55^{\circ}$$

$$\widehat{mHJ} = 115^{\circ}$$

$$X + X + 55 + 115 = 360$$

 $2X + 170 = 360$
 $2X = 190$
 $X = 95^{\circ}$

$$\widehat{mIJ} = 85^{\circ}$$

$$\widehat{mHJ} = 120^{\circ}$$

$$\widehat{mGI} = 70^{\circ}$$

Find x

$$CF = 3x + 7$$
 $DF = 5x - 9$
 $3x + 7 = 5x - 9$
 $16 = 2x$
 $x - 8$

