To find the Geometric Mean of *n* numbers:

- 1 Find their product
- 2 Take the n^{th} root of this product

Find the geometric mean of 4 and 16

In the proportion $\frac{a}{b} = \frac{c}{d}$

a and d are called the extremes

b and c are called the means

If the means of a proportion are equal, then they represent the geometric mean of the extremes

$$\frac{4}{x} = \frac{x}{16} \qquad \sqrt{x^2 = 564}$$

$$x = 8$$

What happens when an altitude is drawn to the hypotenuse in a right triangle?

Because of these similarities, we can conclude two "Altitude on Hypotenuse" Theorems:

Altitude on Hypotenuse Theorem 1

In any right triangle, the altitude from the right angle is the geometric mean between the two segments of the hypotenuse

Altitude on Hypotenuse Theorem 2

In any right triangle, the length of each leg is the geometric mean between the hypotenuse and the segment of the hypotenuse adjacent to that leg.

